MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel
نویسندگان
چکیده
منابع مشابه
Lack of voltage-dependent anion channel in human mitochondrial myopathies.
SIR—In several hundreds of patients with a mitochondrial myopathy an enzyme defect in mitochondrial energy metabolism is identified. However, in a substantial number of subjects no enzyme defect can be detected, although diminished substrate oxidation and ATP production rates are found in their muscle in vitro. The hypothesis, that in this group of patients proteins for transport of vario...
متن کاملFunction and Regulation of Mitochondrial Voltage-Dependent Anion Channel
The voltage-dependent anion channel (VDAC) is the major protein of the mitochondrial outer membrane (MOM). It is now generally accepted that this channel is responsible for most of the metabolite fl ux in and out of mitochondria. Small ions, adenine nucleotides such as ATP and ADP, and other water soluble mitochondrial respiratory substrates cross the MOM through VDAC. Therefore, any restrictio...
متن کاملMembrane lipid composition regulates tubulin interaction with mitochondrial voltage-dependent anion channel.
Elucidating molecular mechanisms by which lipids regulate protein function within biological membranes is critical for understanding the many cellular processes. Recently, we have found that dimeric αβ-tubulin, a subunit of microtubules, regulates mitochondrial respiration by blocking the voltage-dependent anion channel (VDAC) of mitochondrial outer membrane. Here, we show that the mechanism of...
متن کاملStructure of the human voltage-dependent anion channel.
The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is the most abundant protein in the mitochondrial outer membrane (MOM). VDAC is the channel known to guide the metabolic flux across the MOM and plays a key role in mitochondrially induced apoptosis. Here, we present the 3D structure of human VDAC1, which was solved conjointly by NMR spectroscopy and x-ray crystallog...
متن کاملPhosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence
Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2020
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.2020010117